Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
ssrn; 2023.
Preprint en Inglés | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.4319535
2.
biorxiv; 2022.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2022.10.19.512927

RESUMEN

A series of SARS-CoV-2 variants of concern (VOCs) have evolved in humans during the COVID-19 pandemic: Alpha, Beta, Gamma, Delta, and Omicron. Here, we used global proteomic and genomic analyses during infection to understand the molecular responses driving VOC evolution. We discovered VOC-specific differences in viral RNA and protein expression levels, including for N, Orf6, and Orf9b, and pinpointed several viral mutations responsible. An analysis of the host response to VOC infection and comprehensive interrogation of altered virus-host protein-protein interactions revealed conserved and divergent regulation of biological pathways. For example, regulation of host translation was highly conserved, consistent with suppression of VOC replication in mice using the translation inhibitor plitidepsin. Conversely, modulation of the host inflammatory response was most divergent, where we found Alpha and Beta, but not Omicron BA.1, antagonized interferon stimulated genes (ISGs), a phenotype that correlated with differing levels of Orf6. Additionally, Delta more strongly upregulated proinflammatory genes compared to other VOCs. Systematic comparison of Omicron subvariants revealed BA.5 to have evolved enhanced ISG and proinflammatory gene suppression that similarly correlated with Orf6 expression, effects not seen in BA.4 due to a mutation that disrupts the Orf6-nuclear pore interaction. Our findings describe how VOCs have evolved to fine-tune viral protein expression and protein-protein interactions to evade both innate and adaptive immune responses, offering a likely explanation for increased transmission in humans.


Asunto(s)
Infecciones , COVID-19
3.
biorxiv; 2022.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2022.07.12.499603

RESUMEN

SARS-CoV-2 adaptation to its human host is evidenced by the emergence of new viral lineages with distinct genotypic and phenotypic characteristics, termed variants of concern (VOCs). Particular VOCs have become sequentially dominant globally (Alpha, Delta, Omicron) with each evolving independently from the ancestral Wuhan strain. Omicron is notable for its large number of Spike mutations found to promote immune escape and re-infection. Most recently, Omicron BA.4 and BA.5 subvariants have emerged with increasing levels of adaptive immune escape threatening vaccine effectiveness and increasing hospitalisations. Here, we demonstrate that the most recent Omicron variants have enhanced capacity to antagonise or evade human innate immune defenses. We find Omicron BA.4 and BA.5 replication is associated with reduced activation of epithelial innate immune responses versus earlier BA.1 and BA.2 subvariants. We also find enhanced expression of innate immune antagonist proteins Orf6 and N, similar to Alpha, suggesting common pathways of human adaptation and linking VOC dominance to improved innate immune evasion. We conclude that Omicron BA.4 and BA.5 have combined evolution of antibody escape with enhanced antagonism of human innate immunity to improve transmission and possibly reduce immune protection from severe disease.

4.
biorxiv; 2022.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2022.03.07.481785

RESUMEN

SARS-CoV-2 spike requires proteolytic processing for viral entry. The presence of a polybasic furin-cleavage site (FCS) in spike, and evolution towards an optimised FCS by dominant variants of concern (VOCs), are linked to enhanced infectivity and transmission. Guanylate binding proteins (GBP) are interferon-inducible restriction factors that target furin-mediated processing of viral envelope proteins and limit infectivity. Here we investigated whether GBPs restrict SARS-CoV-2 infection, and whether VOCs have evolved spikes that escape restriction. We show that GBP2 and 5 interfere with cleavage of the spike proteins of Wuhan-Hu-1, Alpha, Delta and Omicron, consistent with furin inhibition by GBPs. However, while GBP2/5 restrict Wuhan-Hu-1 infectivity, Alpha and Delta escape restriction. GBP exposure in producer cells influences viral entry route into target cells, with a shift towards endosomal entry. We therefore investigated whether GBP-targeting of spike alters sensitivity to endosomal restriction factors, IFITMs. We find IFITM1, but not IFITM 2 or 3, inhibit infection of naturally-permissive epithelial cells by early-lineage SARS-CoV-2, as well as Alpha and Delta, however GBPs did not sensitise to IFITM restriction. Strikingly, we find Omicron is unique amongst VOCs, being sensitive to restriction by GBP2/5, and also IFITM1, 2 and 3. We conclude evolution of Alpha and Delta spikes have conferred resistance to GBP restriction, but this is not solely due to acquisition of an enhanced FCS. Notably, Omicron, which has evolved under different selective pressures, has selected for changes in spike that not only mediate antibody escape, and shift in cell tropism and entry, but also impact the sensitivity of Omicron to innate immunity, potentially contributing to altered pathogenesis.


Asunto(s)
Síndrome Respiratorio Agudo Grave , COVID-19
5.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.06.06.446826

RESUMEN

Emergence of SARS-CoV-2 variants, including the globally successful B.1.1.7 lineage, suggests viral adaptations to host selective pressures resulting in more efficient transmission. Although much effort has focused on Spike adaptation for viral entry and adaptive immune escape, B.1.1.7 mutations outside Spike likely contribute to enhance transmission. Here we used unbiased abundance proteomics, phosphoproteomics, mRNA sequencing and viral replication assays to show that B.1.1.7 isolates more effectively suppress host innate immune responses in airway epithelial cells. We found that B.1.1.7 isolates have dramatically increased subgenomic RNA and protein levels of Orf9b and Orf6, both known innate immune antagonists. Expression of Orf9b alone suppressed the innate immune response through interaction with TOM70, a mitochondrial protein required for RNA sensing adaptor MAVS activation, and Orf9b binding and activity was regulated via phosphorylation. We conclude that B.1.1.7 has evolved beyond the Spike coding region to more effectively antagonise host innate immune responses through upregulation of specific subgenomic RNA synthesis and increased protein expression of key innate immune antagonists. We propose that more effective innate immune antagonism increases the likelihood of successful B.1.1.7 transmission, and may increase in vivo replication and duration of infection.

6.
medrxiv; 2021.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2021.05.25.21257505

RESUMEN

Plitidepsin is a marine-derived cyclic-peptide that inhibits SARS-CoV-2 replication at low nanomolar concentrations by the targeting of host protein eEF1A (eukaryotic translation-elongation-factor-1A). We evaluated a model of intervention with plitidepsin in hospitalized COVID-19 adult patients where three doses were assessed (1.5, 2 and 2.5 mg/day for 3 days, as a 90-minute intravenous infusion) in 45 patients (15 per dose-cohort). Treatment was well tolerated, with only two Grade 3 treatment-related adverse events observed (hypersensitivity and diarrhea). The discharge rates by Days 8 and 15 were 56.8% and 81.8%, respectively, with data sustaining dose-effect. A mean 4.2 log10 viral load reduction was attained by Day 15. Improvement in inflammation markers was also noted in a seemingly dose-dependent manner. These results suggest that plitidepsin impacts the outcome of patients with COVID-19.


Asunto(s)
Hipersensibilidad a las Drogas , COVID-19 , Inflamación , Diarrea
7.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.05.15.444301

RESUMEN

A homoplasy is a trait shared between individuals that did not arise in a common ancestor, but rather is the result of convergent evolution. SARS-CoV-2 homoplasic mutations are important to characterise, because the evidence for a mutation conferring a fitness advantage is strengthened if this mutation has evolved independently and repeatedly in separate viral lineages. Yet detecting homoplasy is difficult due to insufficient variation between sequences to construct reliable phylogenetic trees. Here, we develop a method to more robustly identify confident homoplasies. We derive a maximum likelihood (ML) tree, with taxa bearing seemingly recurrent mutations dispersed across the tree, and then, for each potentially homoplasic mutation, we derive an alternative tree where the same taxa are constrained to one clade such that the mutation is no longer homoplasic. We then compare how well the two trees fit the sequence data. Applying this method to SARS-CoV-2 yields only a few instances where the constrained trees have significantly less statistical support than unconstrained tree, suggesting phylogenetics can provide limited support for homoplasy in SARS-CoV-2 and that caution is needed when inferring evidence of convergent evolution from phylogenetic methods in the absence of evidence from other sources.


Asunto(s)
Enfermedad de Addison
8.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.03.22.436468

RESUMEN

The recent emergence of SARS-CoV-2 variants with increased transmission, pathogenesis and immune resistance has jeopardised the global response to the COVID-19 pandemic. Determining the fundamental biology of viral variants and understanding their evolutionary trajectories will guide current mitigation measures, future genetic surveillance and vaccination strategies. Here we examine virus entry by the B.1.1.7 lineage, commonly referred to as the UK/Kent variant. Pseudovirus infection of model cell lines demonstrate that B.1.1.7 entry is enhanced relative to the Wuhan-Hu-1 reference strain, particularly under low expression of receptor ACE2. Moreover, the entry characteristics of B.1.1.7 were distinct from that of its predecessor strain containing the D614G mutation. These data suggest evolutionary tuning of spike protein function. Additionally, we found that amino acid deletions within the N-terminal domain (NTD) of spike were important for efficient entry by B.1.1.7. The NTD is a hotspot of diversity across sarbecoviruses, therefore, we further investigated this region by examining the entry of closely related CoVs. Surprisingly, Pangolin CoV spike entry was 50-100 fold enhanced relative to SARS-CoV-2; suggesting there may be evolutionary pathways by which SARS-CoV-2 may further optimise entry. Swapping the NTD between Pangolin CoV and SARS-CoV-2 demonstrates that changes in this region alone have the capacity to enhance virus entry. Thus, the NTD plays a hitherto unrecognised role in modulating spike activity, warranting further investigation and surveillance of NTD mutations.


Asunto(s)
COVID-19
9.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.12.23.424169

RESUMEN

SARS-CoV-2 infection causes broad-spectrum immunopathological disease, exacerbated by inflammatory co-morbidities. A better understanding of mechanisms underpinning virus-associated inflammation is required to develop effective therapeutics. Here we discover that SARS-CoV-2 replicates rapidly in lung epithelial cells despite triggering a robust innate immune response through activation of cytoplasmic RNA-ensors RIG-I and MDA5. The inflammatory mediators produced during epithelial cell infection can stimulate primary human macrophages to enhance cytokine production and drive cellular activation. Critically, this can be limited by abrogating RNA sensing, or by inhibiting downstream signalling pathways. SARS-CoV-2 further exacerbates the local inflammatory environment when macrophages or epithelial cells are primed with exogenous inflammatory stimuli. We propose that RNA sensing of SARS-CoV-2 in lung epithelium is a key driver of inflammation, the extent of which is influenced by the inflammatory state of the local environment, and that specific inhibition of innate immune pathways may beneficially mitigate inflammation-associated COVID-19. HighlightsO_LISARS-CoV-2 activates RNA sensors and consequent inflammatory responses in lung epithelial cells C_LIO_LIEpithelial RNA sensing responses drive pro-inflammatory macrophage activation C_LIO_LIExogenous inflammatory stimuli exacerbate responses to SARS-CoV-2 in both eplithelial cells and macrophages C_LIO_LIImmunomodulators inhibit RNA sensing responses and consequent macrophage inflammation C_LI Graphical Abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=156 SRC="FIGDIR/small/424169v1_ufig1.gif" ALT="Figure 1"> View larger version (65K): org.highwire.dtl.DTLVardef@b07adborg.highwire.dtl.DTLVardef@51ddf7org.highwire.dtl.DTLVardef@c38f9aorg.highwire.dtl.DTLVardef@108db57_HPS_FORMAT_FIGEXP M_FIG C_FIG


Asunto(s)
COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA